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A model experiment was designed and built to simulate the propagation
of sonic booms through atmospheric turbulence. The setup of the model
experiment is described briefly. Measurements of the N waves after they
propagated across the turbulent velocity field reveal the same waveform
distortion and change in rise time as for sonic booms.

The data from the model experiment is used to test sonic boom models.
Some models yield predictions for the waveform distortion, while others
give estimates of the rise time of the sonic booms.

A new theoretical model for the propagation of plane N waves through
a turbulent medium is described.

Introduction.

- model experiment: - successful in simulating the propagation of sonic
booms through atmospheric turbulence
- setup and results

- model experiment data is used to test sonic boom models
- waveform distortion models
- rise time prediction models

- new theoretical model for the propagation of plane N waves through
a turbulent medium
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In the model experiment the N waves are generated by a spark source.
The spark-produced N wave is a spherically spreading wave, but it is also
possible to create a locally plane N wave by inserting a paraboloidal reflec-
tor. The mirror is positioned so that the spark gap is at the focus of the
paraboloidal reflector.

A plane jet generates the turbulent velocity field. A centrifugal fan
blows air into a plenum chamber. The jet is formed when the air exits
the chamber through the nozzle. The jet nozzle velocity is controlled by a
Variac variable voltage controller and by adjusting the width of the nozzle.
The plane jet characteristics are measured by hot-wire anemometry.

The N waves are measured by a wide band condensor microphone. Rise
times as small as 0.45 us can be measured.

Model experiment setup
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Examples of waveform distortion are shown. The upper left signature
is that of a reference plane N wave recorded in the absence of turbulence.
All other signatures represent waveforms measured after the plane N waves
propagated through the turbulent velocity field. The distortion of the wave-
forms is similar as observed for sonic boom signatures. The distortion of
the wavefront is most pronounced near the front and tail shocks. The fact
that the distortion of the tail shock has the same pattern as that of the
front shock is an indication that the turbulence is frozen during passage of
the N wave. Variations in waveform from peaked to rounded and U-shaped
are apparent. Double-peaked and multiple-peaked waveforms and messy
wave shapes are also represented.

Waveform examples

Reference N wave
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The first sonic boom model we review is Crow’s waveform distortion
model (Ref. 1). Crow’s model is based on first order scattering theory. He
modeled the sonic boom as a step shock of strength Ap. The mean-squared
pressure perturbation equals (p%) = Ap?® (t./ £)"/®, where t. is a critical time
that is a function of the turbulence characteristics. The graph presents an
example of the variance of an N wave for a value of t. = 2 ms. A finite,
very large value is obtained for the mean-squared pressure perturbation
near the shock. Since the theory is a first-order scattering theory, both the
incident and the scattered wave propagate at the ambient speed of sound
co. However, from geometric acoustics we know that some ray paths might
exist along which the actual propagation speed is faster than the ambient
speed of sound. If we want to compare Crow’s prediction with experimental
data, then we have to shift the time origin of each sample waveform so that
it begins at the time of shock arrival.

Testing of previous models

1. Crow's distortion model
- step shock :(¥* (®)) = (t/)°  v(t) = p°/4p,
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- Problems: < %%0) >~ 10®
- incident wave of form f(x + cg t)

- shock arrival time?

- comparison with experiment?
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Plotkin (Ref. 2) showed that an incident wave of arbitrary structure can
be represented as a sum of infinitesimal step shocks. When the incident
wave is modeled as a ramp shock instead of a step shock, an upper bound

for the maximum pressure perturbation can be found, which is given by
7/12
(p?s)l/2 = 152Ap (%{;) / , where t is the rise time of the ramp shock.

Lipkens (Ref. 3) extended this model for an N wave. The rms pressure
perturbation is presented in the first graph for an N wave with a rise time
of 1 us and a critical time of 0.33 pus. In order to calculate the rms pres-
sure perturbation for the measured waveforms of the model experiment, we
shifted the time origin of each waveform so that the times corresponding
to 50 % of peak pressure all coincide.

A comparison between the measured distortion and Crow’s prediction is
presented in the lower graph. The measured distortion has the same general
behavior as Crow’s prediction, but the maximum pressure perturbation
according to Crow’s prediction is larger than the measured one by a factor
of more than ten.

- Plotkin (1971): extension of Crow’s model for a ramp shock
- incident wave of arbitrary structure: sum of infinitesimal steps

- upper bound for rms pressure perturbation
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- extension to N wave
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It is now widely accepted that molecular relaxation, especially that of
nitrogen, is responsible for the large rise time of sonic booms. Controversy
still exists whether turbulence has a pronounced effect on rise time. When
a theory for the propagation of shock waves and transients through a tur-
bulent medium is developed, it is important to incorporate the effect of
shock arrival time correctly. The rise time of the stochastic mean of a set
of waveforms represents an insignificant upper bound to the average of the
rise times of each individual waveform. The graph shows a simple example
that demonstrates that the rise time of the stochastic mean waveform of
five step shocks, each having a rise time of 1 us, is more than tenfold the
average of the rise time of the individual realizations.

Rise time prediction models

- Turbulence cause of large rise time? What mechanism?

- Question of shock arrival time

0I5 20 25 W35 0 45 %0
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Pierce’s model (Ref. 4) is based on the mechanism of wavefront folding at
a caustic. If at a certain instant turbulence causes a ripple to develop on the
shock front, a caustic is formed when the wavefront is propagated according
to geometric acoustics. Inside the caustic three segments of the shock front
arrive instead of one. Pierce argued that this process could occur many
times if the turbulence intensity is large. A receiver then “sees” many
segments of a multifolded wavefront at slighly different arrival times. The
result is that instead of a sharp shock front a shock is received that consists
of many smaller shocks at different arrival times. The overall result is a
rounded shock front. The lower graph shows the mean waveform calculated
according to Pierce’s theory. Again, ¢, is Crow’s critical time.

1. Pierce (1971): Wavefront folding at a caustic
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The mean waveform is expressed as a function of Crow’s critical time ¢..
The parameters E and b; are dependent on the structure of the atmospheric
turbulence.

Again, the individual waveforms of the model experiment are shifted
in order that times corresponding to 50 % of peak pressure coincide. The
plot compares Pierce’s prediction for the mean waveform and the computed
mean of the shifted individual waveforms. A good agreement is reached.

In order to confirm this correlation, we performed an experiment at five
different jet nozzle velocities. The comparison between Pierce’s prediction
and the measurements is fairly accurate. A maximum discrepancy of about
30 % is observed for a nozzle velocity of 31.3 m/s.

- mean waveform
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jet nozzle | charact.

velocity time | 7Plerce | Tmeas.
(m/s) (ns) | (#s) | (ps)
12.4 0.23 0.554 | 0.685
18.3 032 | 0.769 | 0.745
22.7 0.37 | 0.889 | 0.922
26.6 0.41 0.984 | 1.061
31.3 0.46 1.091 | 1.308
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Kulkarny and White (Ref. 5) and White (Ref. 6) developed a model
for the plane wave propagation through a 2-D and 3-D, random, isotropic
medium. The model is based on geometric acoustics. The results shown
here are for a 3-D, random medium. White derived a uniform probability
density function p(t) for the occurence of a first caustic. The parameter ¢ is
a nondimensional variable. The only information needed about the random
medium is its correlation function. Once this information is known, the
scaling variable v is calculated. The graph shows the probability density
curve. It is observed that the most likely position for the occurence of a
first caustic is at £ = 1.3. In the table, values for the most likely position -
of a first caustic and the mean distance to a first caustic are shown. As is
noticed, it is possible that an N wave will pass through a caustic. However,
it is unlikely that the wave will pass through more than one caustic.

White and Kulkarny: plane wave propagation through a 3-D,
isotropic, random medium (geometric acoustics)

- probability density function p(t) for the occurence of a first caustic
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Plotkin and George (Ref. 7) developed a model based on second order
scattering theory. They derived a Burgers equation in which the absorption
term is a function of the turbulence characteristics. L, is the integral
length scale, a measure of the eddies of permanent character, and er =

<(Ac + Au")2> /c is an effective turbulence Mach number. The rise time

is determined by the balance between nonlinear steepening and scattering
by turbulence. An expression for the rise time is obtained. Plotkin (Ref. 2)
compared results from their model with measurements and obtained a good
correlation. It is, however, difficult to obtain accurate estimates of the
integral length scale and the turbulence Mach number of the atmosphere.
A controversy still exists as to whether travel time variations are accounted
for correctly or not.

2. Plotkin and George (1972): Second order perturbation theory
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- Problem: travel time variations accounted for?
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In order to compare Plotkin’s prediction with measurements, we com-
‘puted the mean waveform in two different ways. First, we computed the
mean waveform by shifting the time origins in a similar way as described
before and we call this the time shifted mean. Second, we calculated the
stochastic mean waveform without any correction for the arrival time of
each individual waveform and we call this the stochastic mean. The graph
shows an example of the difference for the two computed mean waveforms.
As is seen, the stochastic mean presents an insignificant upper bound to
the rise time of the time shifted mean.

Again we compare results for five different nozzle velocities. It is no-
ticed that Plotkin and George’s prediction has a better correlation with the
stochastic mean than with the time shifted mean. A conclusion that seems
apparent from the results is that travel time variations of individual waves
are not accounted for correctly in Plotkin and George’s model.

o\1/2
167 po {Bu®) Lo _(Ay?)
T = € = —m—m
v+ 1Apg ca Co
m 03
—_ l‘ - - armrival time correction
é 400 :' ' =— no arrival time correctiw{

-400
IR R T R
Time (ps)
jet nozzle | charact. stoch. mean | time shifted
velocity time TPlotkin Tineas. Tmeas.
(m/s) (ps) (us) (us) (ps)
124 0.23 1.13 2.767 0.685
18.3 .0.32 2.49 3.867 0.745
22.7 0.37 3.78 4.840 0.922
26.6 0.41 5.34 4.833 1.061
31.3 0.46 7.37 5.528 1.308
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The last model is that of Ffowcs Williams and Howe (Ref. 8) (FfW &
H). In their paper FfW & H mention that the Burgers equation derived
by Plotkin and George represents the stochastic mean. FfW & H warn
about possible misinterpretation of the results of the Burgers equation as
an energy loss, while in reality it describes the loss of coherence of the
mean wave because of the random convection of the shock fronts. The
model by FfW & H is based on a multiple scattering theory. A diffusion
equation is obtained that describes the acoustic energy £ in wavenumber
space as a function of the turbulence Mach number m and a length scale A
related to the Taylor microscale. An expression for the shock thickness 6 is
derived as a function of the incident shock thickness 8o and the integrated
scattering diffusivity g. FfW & H found at most an increase of 30 % in
the rise time and concluded in their paper that molecular relaxation must
be the cause of the large rise times of booms. Plotkin (Ref. 9) argued that
since his model does not yield an acoustic energy loss but just a spatial
relocation, one would not expect a change in rise time according to the
definition employed by FfW & H.

3. Ffowes Williams and Howe (1973): Multiple scattering

- Plotkin’s approach describes stochastic mean properties of boom

- Multiple scattering theory: diffusion equation for distribution of
acoustic energy in wavenumber space

st
% = [ kB
6 =& [1 + u(z)]
) =2 [ g

- At most a 30 % increase in rise time

- Molecular relaxation is responsible for large rise time

- Problem: phase scrambling is not accounted for
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The upper graph presents a comparison of the energy spectrum of an
ideal N wave, its rise time and duration equal that of the spark-produced N
wave, with the averaged spectrum of 200 N waves recorded in the absence
of turbulence. The energy spectrum of the spark-produced N waves closely
resembles that of an ideal N wave. The troughs and peaks of the measured
spectrum are more rounded than that of the ideal N wave.

The middle graph shows a comparison of the averaged energy spectrum
of 200 N waves recorded in the absence of turbulence with that of 200 N
waves measured after propagation through the plane jet turbulence. Again,
both spectra are very similar, and troughs and peaks are more rounded for
the N waves that propagated through the turbulent medium. However, no
significant redistribution of acoustic energy is observed in the spectrum, as
was predicted by Ffowcs Williams and Howe.

The table presents a comparison between the prediction of Ffowcs Williams
and Howe and the measured values for the rise time. Ffowcs Williams and
Howe’s model clearly yields values for the rise time that are much smaller
than the measured ones.
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124 0.0027 | 0.687 | 0.685
18.3 0.0047 | 0.688 | 0.745
22.7 0.0067 | 0.690 | 0.922
266 0.0090 | 0.691 | 1.061
31.3 0.0116 | 0.693 | 1.308
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A new model has been developed for plane wave propagation through a
statistically random, isotropic medium (Ref. 3). The random medium con-
sists of a turbulent velocity field. A linear acoustic wave equation (Ref. 2)
is derived in which first and second order turbulence effects are included. A
perturbation scheme is used to solve the wave equation up to second order.

The turbulent velocity field model was developed by Karweit et al.
(Ref. 10). Von Kérmén’s model for incompressible, isotropic turbulence
is used to obtain an expression for the 3-D turbulence energy density spec-
trum. The spectrum is characterized by two length scales. Ly is an outer
length scale, and 7n is the Kolmogorov microscale.

The 1-D energy spectrum of the plane jet was measured by hot-wire
anemometry. If we assume the turbulence is isotropic, the 3-D energy
spectrum can be derived. A good agreement is reached between the model
and the measurement.

New numerical model for plane wave propagation through
a statistically random, isotropic medium

- Turbulent velocity field model

- Linear acoustic wave equation, second order turb. effects

- Perturbation solution

- Results

1. Turbulent velocity field model (Blanc-Benon, Comte-Bellot, 1991)

- Von Karmén’s model for incompressible, isotropic turbulence

55 T(5/6) u? ke 43\
E(k) = — exp (—2.25(nk)
9 ar(1/3) 123 (k2+L52)”/6 ( )
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The turbulent velocity field consists of a sum of discrete Fourier velocity
modes that are randomly oriented in space. The wave vector geometry of a
single Fourier velocity mode is shown in the first graph. The angles # and
¢ determine the orientation of the wavevector k. The probability density
function of both angles are chosen in order to ensure statistical entropy
with respect to k. With each turbulence wave vector, a velocity vector
a (k) is associated. Because the turbulent velocity field is incompressible,
the velocity vector lies in a plane perpendicular to k. The random angle 3
determines the direction of a (k). The amplitude of a (k) is defined by von
Ké4rmdn’s spectrum. A random phase angle « is attributed to each Fourier
mode. A final expression for the turbulent field is obtained as a sum over
all the modes.

Wave vector geometry of a single Fourier velocity mode

- wavenumber k is randomly oriented: P(8) =sin8/2 and P(¢) =1/27

statistical isotropy with respect to k

- velocity vector a(k) ->  in plane perpendicular to k

9 is random

a(k) ~ E(k)Ak

phase 4 of a(k) is random

N

- ur(x) =) laj| cos(k; - x +7)
i=1
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A linear acoustic wave equation is derived. First and second order tur-
bulence effects are retained in the wave equation. We assume that the wave
propagation is lossless (isentropic) and that the turbulence is frozen. We
only consider velocity fluctuations and do not include thermal fluctuations.
€q is the acoustic Mach number and er is the turbulence Mach number.

A regular perturbation scheme in the turbulence Mach number is em-
ployed to solve the wave equation. The N wave generated at the focus of
the mirror is the boundary condition and it is represented as a sum of its
Fourier components.

2. Linear acoustic wave equation

¢ lossless wave propagation
o the turbulence is frozen
¢ only turbulent velocity field is present

& wave equation

2 wr;

O°p= —ur - VE - 252452 (/ Vpdt), atr
+ 255 2 (f (ur - V) [ Vpdtd), atr?
+22081 2 (] (f Vpdt - V)urdt), - ?1_(uT V)ug-Vp) €acr®

1 00
+62—PV'((“T - V)ur) €a€7?

3. Perturbation scheme

D=Dpo+erpr +er’pa+ ...

B.C. p(0,t) = pn(t)

PN(t) =D bnsin nwot
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Results from the first order solution are shown here. Each graph repre-
sents the sum of the incident N wave and the first order pressure perturba-
tion after propagation through a single realization of the turbulent velocity
field. As one observes, the first order pressure perturbation is responsible
for the distortion of the N waves. Variations in waveform from peaked to
rounded are noticed. Double-peaked and multiple-peaked waveforms are
also shown. In some cases (e.g., the rounded waveform), the rise time of
the waveform is changed, in other cases it is unaltered. However, the ar-
rival time of each wave is the nominal arrival time (i.e., that of the incident
wave). A calculation of the second order pressure perturbation is necessary.

4. First order perturbation solution
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The second order equation that has to be solved contains two secular
terms and regular terms. A solution for the second order pressure pertur-
bation is obtained.

The total solution consists of the incident wave, the first order pressure
perturbation, and the second order pressure perturbation due to the secular
and regular terms. A renormalization technique is used to strain the 2-
coordinate. The straining of the z-coordinate is used to remove one of the
singularities. The final solution is then written asa sum of the Fourier
components of the N wave. The second order singularity introduces changes
in the phase speed. At second order, the phase speed becomes dependent
on the turbulence characteristics.

5. Second order perturbation solution

o?er’p = (@ _ﬁ—'y)sinnwo(t— f;) —6cosnwo(t - é) ,»  p2A(0,t)=0

+ regular terms

2 ___(a_ﬂ"'Y)cco
e ph= 27’W0

ZCOS nwo(t - —C:_;) + 267::’ 2 sin nwg (t - —’—)

+ regular terms
6. Total solution

P = b, sin nuwp (t - f;) + e

_(a-B -7
2nwo

zcosnwo(t - '::) + 26;:’ zsinnwo(t - i)
(4]

+ regular terms of order er? or higher

Renormalization technique (strained coordinate)
Z=S(1+€T2U}1+...)

Final solution p= zn: (1 + ex2wq2)sin leo(t - m) + er

e ¢pp, is first order perturbation solution

. szwl = —(ZC:)T_(Z_:;)—Z)

* er'wn=fin
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Results from the numerical simulations that incorporate the second or-
der effects are shown. The phase speed is a function of the turbulence
characteristics, and the actual phase speed is different from the nominal
phase spced. Small variations in arrival time are observed. It is seen that a
combination of first and second order effects of the turbulent velocity field
is needed to fully explain the waveform distortion and the change in rise

time.

7. Results from numerical simulations
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In order to make a convincing statement that the theoretical model is
capable of simulating the propagation of plane N waves through a turbulent
medium, we compared computed waveforms of the theoretical model with
actual measured waveforms of the model experiment. The upper traces
represent waveforms computed by the theoretical model, while the lower
traces show waveforms from the model experiment.

Two examples are given of a spiked waveform, and two examples of
a rounded waveform. As one notices, the waveforms from the theoretical
model exhibit the same distortion and change in rise time as that of the
model experiment.

8. Comparison of numerical simulations and measured
waveforms
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Comparisons of double-peaked waveforms are shown, and also a com-
parison of a U-shaped waveform and a rounded waveform is presented.
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We showed that a model experiment can be successful in simulating the
propagation of sonic booms through atmospheric turbulence.

We also reviewed sonic boom models and compared the data from the
model experiment with the results from the models. We found that only
Pierce’s wavefront folding model is fairly accurate and that results from
other models are not confirmed by the model experiment data.

A new theoretical model is developed in which plane waves propagate
through single realizations of a turbulent velocity field. The wave equation
is solved by a perturbation method. The first order pressure perturbation
creates the distortion of the N wave, and at second order a singularity
occurs. The second order singularity introduces changes in the phase speed.
The results from the theoretical model are confirmed by comparison with
measured waveforms from the model experiment.

Conclusion

- model experiment is successful

- reviewed sonic boom models
only Pierce’s model is fairly accurate

others are not confirmed by model exp. data

- developed new theoretical model
waves are propagated through single realizations of turbulent
velocity field
second order solution introduces a dispersion effect
waveform distortion and change in rise time is caused by dispersion
effect
results are confirmed by comparison with measured waveforms
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